可再生能源和分布式能源资源是能源转型时代的反映。具有好的负荷分布的智能电网现在更接近于现实。然而,配电网中现有的变电站会发生什么?现在电能质量问题越来越多地出现,他们是否能够处理这些要求?现在仍然手动或半手动操作的旧系统会发生什么?对于基于不同技术的电力变压器配电网,要做些什么?
在这个文章中两种不同类型的开关切换需要考虑到。区分了空载开关的类型(NLTC作为空载开关切换)和在不中断负载的情况下切换的类型,因此它在负载下在不同的转换比之间来回切换(OLTC作为空载开关切换)。一般来说,变压器上的开关被路由到开关切换,这取决于要处理的操作电流。在本例中,开关和开关切换的机械连接被实现为旋转驱动。这个激活有手动或半手动或其他通过电信号的方式。使用1或3相开关切换,通常根据负载容量或开关配置(星或角形)选择和安装。
在现有变电站中,安装可以包括许多不同技术,供应商和设备类型的互联。网络已经经过多年的扩展,并不总是在他们被更新的时候扩大。这往往是由于费用和缺乏资源。因此,最初的要求可能是适当地自动化切换开关,这取决于高压网络的高级自动电压控制。这些要求可能类似于以下列子:
将准确的数据准实时传输,将切换开关的位置报告给SCADA系统
通过远程控制自动控制现有的切换开关
通过远程控制手动控制现有的切换开关
以及自动远程访问,现场维护和维修时的手动和本地访问能力
由于频繁的负荷变化和相对较高的机械和电气压力施加在切换开关的部件上,它会受到磨损,这会使它容易发生故障,以及频繁维护。此外,在剩余系统中,切换开关往往还没有通过系统集成实现完全自动化,换句话说,不是通过SCADA直接联网的。负载峰值可能导致切换开关立即切换电平,即使这是不必要的。这反过来又导致磨损增加,并对其敏感性产生负面影响,从技术和成本的角度看故障。因此,有效地控制切换开关是保证使用寿命的关键。
缺乏网络自动化问题的另一个可能是不同变电站的设备来自不同的变电站制造商。由于不同的设备设计,不同的传感器技术,不得不用于将切换开关的确切位置返回SCADA.这个可能意味着同一网络的每个变电站的自动化解决方案不会基于相同的部件。此外,在许多情况下,在现场提供的能源自动化方面的技术技能并不足以在没有支持的情况下实施这类项目。
问题描述的最后一个方面是基于变电站是经常没有连接到数字通信网络的。因为这个,它建议将网络分割,从而将数据数字化执行步骤。以下三个步骤可作为建议:
(1) 本地自动化:通过变电站中的数据记录器存储数据,然后可以在本地和按需检索数据。
(2) 远程监控:通过电力线,EDGE,GPRS等传输选定的数据,仅限一个小的特定数据集。
(3) 远程控制:基于LTE,光纤等宽带通信的远程监控。
为了实现切换开关的自动化和数字化,并考虑到前面描述的需求和问题描述的所有方面,一种精度为0.2级的高精度测量装置与软PLC耦合。在这种情况下,这种耦合或集成是通过使用Centrax CU3000或CU5000 二合一仪表,由Camille Bauer作为基本平台用于能源自动化解决方案。测量仪表执行测量电气参数,电压和电流消耗。测量仪表还产生额外的测量和数据用于评估电气参数的质量,例如谐波,不平衡,功率因素等。能量数据也被直接可视化。测量值要么存储在本地,要么通过电力线直接传输到数据库或SCADA系统或Modbus。在远程监控和远程控制应用的情况下,系统始终保持在准实时的电压和电流值。
为了实现需求中先前描述的维护访问,切换开关由Centrax CU3000或CU5000的软PLC控制。所需的触发器由手动或SCADA系统根据Centrax测量仪表返回的电气值生成。这会激活切换开关,导致电压要么是增加或是减少。切换开关的位置必须在测量值的数据内容中处理,以防止任何中断或切换错误。这种合理性检查是通过检测切换开关的机械位置来实现的。由于各种有载的切换开关的设计不同,从轴向信号,电阻值,BCD编码信号或一次电压Up与和二次电压Us之间的比值中采样值,然后将其与切换开关表中的值进行比较。
采用二合一的方法,从成本/效益的角度看优势是显而易见的。将一个高度精确的测量仪表和一个软PLC集成在一个单一的外壳中意味着单独的部件成本降低了50%。
对以采购和物流为中心的流程进行优化,同时消除不直接兼容的部件。此外,职能整合在财务和时间两方面对规划和执行费用立即产生积极影响。所有使用部件的使用寿命和重现性对总体结果有积极的影响,切换开关的本地控制考虑到通信网络的相应状态,从而用时间戳记录每个切换开关的更改。这创造了可靠的数据,也记录在案,以便进行预防性和成本优化的维护。